
Server-side Log Data Analytics for I/O Workload
Characterization and Coordination on Large Shared

Storage Systems
Yang Liu?, Raghul Gunasekaran†, Xiaosong Ma�, and Sudharshan S. Vazhkudai†

?North Carolina State University, yliu43@ncsu.edu
�Qatar Computing Research Institute, Hamad Bin Khalifa University, xma@qf.org.qa

†Oak Ridge National Laboratory, {gunasekaranr, vazhkudaiss}@ornl.gov

Abstract—Inter-application I/O contention and performance
interference have been recognized as severe problems. In this
work, we demonstrate, through measurement from Titan (world’s
No. 3 supercomputer), that high I/O variance co-exists with
the fact that individual storage units remain under-utilized for
the majority of the time. This motivates us to propose AID, a
system that performs automatic application I/O characterization
and I/O-aware job scheduling. AID analyzes existing I/O traffic
and batch job history logs, without any prior knowledge on
applications or user/developer involvement. It identifies the small
set of I/O-intensive candidates among all applications running
on a supercomputer and subsequently mines their I/O patterns,
using more detailed per-I/O-node traffic logs. Based on such auto-
extracted information, AID provides online I/O-aware scheduling
recommendations to steer I/O-intensive applications away from
heavy ongoing I/O activities.

We evaluate AID on Titan, using both real applications (with
extracted I/O patterns validated by contacting users) and our
own pseudo-applications. Our results confirm that AID is able
to (1) identify I/O-intensive applications and their detailed I/O
characteristics, and (2) significantly reduce these applications’
I/O performance degradation/variance by jointly evaluating out-
standing applications’ I/O pattern and real-time system l/O load.

I. INTRODUCTION

HPC facilities support multiple concurrently executing
workloads with shared storage. For instance, the center-wide
Lustre-based parallel file system, Spider [26], at Oak Ridge
National Laboratory (ORNL) provides 30PB of capacity and
over 1TB/s aggregate I/O throughput, serving several machines
including Titan, the current No. 3 supercomputer [3].

Like most large shared resources, HPC storage systems
over-provision I/O bandwidth. On average, individual pieces
of hardware (such as I/O server nodes and disks) are often
under-utilized. Figure 1 illustrates this with the cumulative
distribution of I/O throughput on each of Spider’s Lustre OSTs
(Object Storage Targets) during a 5-month period in 2015,
giving the percentage of time each individual OST spends at
different throughput levels. Overall, most of the OSTs are not
busy, experiencing less than 1% (5MB/s) and 20% (100MB/s)
of their individual peak throughput during 88.4% and 99.6%
of system time, respectively.

1 2 4 8 16 32 64 128 256 512
0

20%

40%

60%

80%

100%

OST−level I/O throughput (MB/s)

P
e
rc

e
n

ta
g

e
 o

f
s
y
s
te

m
 t

im
e

88.4% time < 1% capacity(5MB/s)

98.5.4% time < 5% capacity(25MB/s)

99.6% time < 20% capacity(100MB/s)

Fig. 1. CDF of per-OST I/O throughput

Even so, I/O-heavy jobs may collide, creating contention-
induced performance variance, a recognized challenge for I/O-
related performance debugging and optimization [14], [15],
[19], [27], [29]. Furthermore, as hard disks remain the domi-
nant media, I/O contention leads to excessive seeks, degrading
the overall I/O throughput.

One major reason for such I/O-induced performance vari-
ance is the I/O-oblivious job scheduling: supercomputer jobs
are typically dispatched in a FIFO order plus backfilling,
with further priority-based adjustment [2]. While there are
several studies aimed at reducing inter-job I/O contention [28],
[39], I/O-aware job scheduling has never been available on
production HPC systems. The major obstacle lies in the cost
to obtain per-application parallel I/O characteristics through
tracing/profiling and the difficulty for a supercomputer to
demand such information from users/developers.

In this work, we propose AID (Automatic I/O Diverter),
an I/O-aware job scheduling mechanism built on the zero-
overhead hardware monitoring already available on super-
computer storage servers [24]. AID correlates the coarse-
grained server-side I/O traffic log (aggregate and OST-level)
to (1) identify I/O-intensive applications, (2) “mine” the I/O
traffic pattern of applications classified as I/O-intensive, and
(3) provide job scheduling suggestions on whether an I/O-SC16; Salt Lake City, Utah, USA; November 2016

978-1-4673-8815-3/16/$31.00 c©2016 IEEE

intensive job can be immediately dispatched.
Note that AID achieves the above goals fully automatically,

without requiring any apriori information on the applications
or jobs, additional tracing/profiling, or effort from develop-
ers/users. This is important as typical supercomputers cannot
achieve universal participation from users for collecting per-
job I/O patterns. Instead, AID transparently examines the full
job log and identifies common I/O patterns across multiple
executions of the same application. This is based on the same
intuition exploited by our prior work leveraging supercomputer
I/O traffic logs [18]: the common behavior observed across
multiple executions of the same application is likely attributed
to this application. However, our prior work identifies the
I/O signature of a given I/O-intensive application and makes
the strong assumption that its job run instances are iden-
tical executions. In contrast, AID takes a fully data-driven
approach, sifting out dozens of I/O-heavy applications from
job-I/O history containing millions of jobs running thousands
of unique applications. These applications can then be given
special attention in scheduling to reduce I/O contention. Also,
AID is able to tolerate common behavior variances in an
application’s repeated execution (such as running for varied
number of timesteps). Finally, AID utilizes detailed per-OST
logs that became available more recently, while our prior work
only studies aggregate traffic.

We have implemented AID and evaluated its effectiveness
in I/O characterization on Titan, using real applications (par-
tially validated by querying their users), as well as pseudo-
applications (where “ground truth” is readily available). For
validated I/O-intensive applications, we verified the accuracy
of AID’s I/O pattern identification. Finally, we assessed the
potential gain of I/O-aware job scheduling. Our results confirm
that AID can successfully identify I/O-intensive applications
and their high-level I/O characteristics. While we currently
do not have the means to deploy new scheduling policies on
Titan, our proof-of-concept evaluation indicates that I/O-aware
scheduling might be highly promising for future systems.

II. BACKGROUND

Our work targets petascale or larger platforms. Below we
present an overview of one such storage system, the ORNL
Spider file system [26], supporting Titan and several other
clusters. It is also where we obtain log data, and perform
experimental evaluation.

A. Spider Storage Infrastructure

Figure 2 shows the Spider architecture, running Lustre [8].
Spider’s 20,160 SATA drives are managed by 36 DDN
SFA12K RAID controllers (henceforth referred to as con-
trollers). Every 10 disks form a RAID 6 array that makes
a Lustre Object Storage Target (OST). Access is via the
288 Lustre Object Storage Servers (OSSes), each with 7
OSTs attached, partitioned into two independent and non-
overlapping namespaces, atlas1 and atlas2, for load-balancing
and capacity management. Each partition includes half of the

Fig. 2. Spider architecture

system, 144 Lustre OSSes and 1,008 OSTs. The compute
nodes (clients) connect to Spider over a multistage InfiniBand
network (SION).

B. I/O and Job Data Collection

I/O traffic logs Server-side I/O statistics have been collected
on Spider since 2009, via a custom API provided by the DDN
controllers. A custom daemon utility [24] polls the controllers
periodically and stores the results in a MySQL database. Data
collected include read/write I/O throughput and IOPS, I/O
request sizes, etc., amounting to around 4GB of log data per
day. Unlike client-side or server-side I/O tracing, such coarse-
grained monitoring/logging via the separate management Eth-
ernet network has negligible overhead.

Applications are allocated a set of OSTs. Based on the
stripe width k, the I/O client round robins across the k OSTs.
The current Spider system has monitoring tools capturing per-
OST I/O activity. In this work, we leverage such OST-level
information for I/O pattern mining and scheduling.
Batch job logs Most supercomputers maintain a batch job log,
recording information items like the user/project ID, number
of nodes used, job submission, start/end times, job name/ID,
etc. By juxtaposing the I/O traffic and job logs, one may mine
the correlation between I/O traffic and applications’ (repeated)
executions, to obtain information on application I/O patterns
in a lightweight and non-intrusive manner.

III. APPROACH OVERVIEW

A. Problem Definition

Our work has two goals: (1) to automatically identify I/O-
intensive applications and their I/O access patterns, and (2) to
explore I/O-aware job scheduling that staggers jobs running
such applications identified as I/O-intensive.

While I/O-aware job scheduling is the ultimate goal for
approaching the inter-job I/O interference problem, to deploy
batch scheduler modifications on a large production system is
beyond the scope of this paper. Meanwhile, there lacks mature
parallel file system simulators and it is very hard to generate a
realistic background workload mixture. Therefore, rather than

2

developing an enhanced scheduler, we assess the potential ben-
efit of our proposed I/O-aware scheduling by making simple
recommendations (“now” or “later”) considering application
I/O pattern and current system load. Validation is done by
comparing the results of I/O-intensive job execution under
different recommendations.

The input to AID will be the batch job and server-side I/O
traffic logs covering a common time period. AID mines the
two logs jointly to identify a set of I/O-intensive applications.
Such mining is done continuously and incrementally, with new
log data appended daily. For each application labeled as I/O-
intensive, AID further identifies its major I/O characteristics.
Its job scheduling is then augmented by such I/O-aware anal-
ysis, taking into account I/O characteristics (plus the current
system I/O load as additional input). The scheduling output is
a simple recommendation, in the form of “run” (to dispatch
the job in question now) or “delay” (to hold the job in queue
and re-examine at the next event-driven scheduling point, such
as upon an active job’s completion).

B. Challenges and Overall Design

This work shares several common building blocks with the
IOSI tool [18]. For a given I/O-intensive application, IOSI au-
tomatically extracts its I/O-signature, plotting the application’s
I/O throughput along its execution timeline. Common to both
tools is the fact that the feasibility of automatic application I/O
characterization is established based on periodic and bursty I/O
patterns of HPC applications [34], with the same application
executed repetitively through many batch jobs [9]. The bursty
behavior creates I/O bursts, phases of elevated I/O activity,
identified from the background noise using techniques such
as Wavelet Transform and throughput level filtering [18]. I/O
burst serves as the basic unit of per-application I/O traffic
identification. The periodic behavior establishes a consistent
“pattern”, facilitating the attribution of I/O traffic to specific
applications. The repetitive behavior allows pattern identifica-
tion by further correlating multiple samples (segments of I/O
traffic logs intercepted by the job start/end times of the target
application), identifying the commonality across samples as
application-affiliated “signal” and difference as “noise.”

However, IOSI has I/O-intensive applications pre-identified
and samples from guaranteed identical job runs (same exe-
cutable and input). AID’s focus, in contrast, is to identify “sus-
pected I/O-intensive applications”, a fraction of the thousands
of unique applications generating millions of batch jobs, with-
out any I/O-related information about them. Such automatic
classification is quite challenging for several reasons.

First, we cannot assume that supercomputer jobs running
the same application are identical. For example, 20 runs dur-
ing 11/2014-01/2015 of one application had execution times
ranging from 1958 to 86644 seconds. While I/O-intensive
applications do tend to possess common periodic I/O patterns,
large time variance makes sample alignment and I/O burst
identification harder, especially without apriori knowledge on
an application’s I/O intensity.

Second, in some cases application runs do contain incon-
sistent I/O patterns. As periodic I/O itself is a controllable
operation, non-production runs checking algorithmic correct-
ness or tuning computation performance often have I/O off or
at reduced frequency. While there are applications that seldom
change such configurations, the existence of a change in I/O
pattern is more challenging to identify than the execution time
variance, and further complicates our classification.

Considering these challenges, we focus on applications/jobs
with heavy I/O demands, which compose a small fraction of
HPC applications. A recent study using Argonne’s Darshan
I/O profiling tool [21] observed that the aggregate throughput
for 75% of applications never exceeded 1GB/s, roughly 1%
of the peak platform bandwidth. Our server-side, black-box
analysis shares similar observation with this application-side,
white-box investigation.

Here we consider an application I/O-intensive, if we can
identify consistent I/O bursts across its multiple runs, with-
out adopting any specific threshold. The intuition is that
I/O-intensive parallel applications do possess intensity (per-
application average throughput of 10-200GB/s among the
AID-identified intensive applications) and certain kind of
patterns to be picked up by AID.

6FKHGXOHU�

MRE�ORJ
6HUYHU�VLGH

WUDIILF�ORJ

$SSOLFDWLRQ�,�2�FKDUDFWHUL]DWLRQ

,�2�,QWHQVLYH�DSSOLFDWLRQ�

NQRZOHGJH�EDVH

,QLWLDO�,�2�LQWHQVLW\�FODVVLILFDWLRQ

&DQGLGDWH�DSSOLFDWLRQ�YDOLGDWLRQ

$SS�267�XWLOL]DWLRQ�DQDO\VLV

3ODWIRUP�OHYHO�

MRE�VFKHGXOLQJ�

UHFRPPHQGDWLRQ�

V\VWHP

3HU�267�

WUDIILF�ORJ

,�2�DZDUH�VFKHGXOLQJ�

UHFRPPHQGDWLRQ

6XSHUFRPSXWHU 6WRUDJH�V\VWHP

&XUUHQW

EDWFK�TXHXH

Fig. 3. AID software architecture

Figure 3 outlines AID’s structure, which comprises two
major components: (1) an offline application I/O characteri-
zation engine that incrementally processes the I/O traffic logs
and batch job logs, saving analysis results in an application
knowledge base, and (2) an online I/O-aware scheduler that
queries the knowledge base and real-time system load levels to
make scheduling recommendations for identified I/O-intensive
applications. Unlike IOSI, AID also utilizes the more recently
available per-OST I/O traffic log to analyze the number of
OSTs used simultaneously by the application.

IV. APPLICATION I/O CHARACTERIZATION

AID’s I/O characterization relies solely on its two input
datasets: the job log and the I/O traffic log. The I/O traffic
log comes in at per-OST granularity, which provides valuable
additional insight to split I/O activities from concurrent jobs.
There is little return, however, for the huge time required
to examine the full combination of thousands of OSTs and

3

millions of jobs without knowing anything about any of the ap-
plications. Further perplexing the situation, many applications
create new files during each I/O burst. E.g., an application may
aggregate its output from 2048 processes to 64 shared files
every 1000 computation timesteps. Though its OST footprint
(number of OSTs used during each I/O burst) is stable, each
wave of files are assigned and striped to their destination OSTs
at file creation time. Therefore, the subset of OSTs showing
I/O traffic from this application migrates between I/O bursts.

Considering the above, AID takes a two-phase strategy,
to first look at the aggregate traffic log and identify a set
of applications suspected to be I/O-intensive, which we call
I/O-intensive application candidates (candidates in short for
the rest of the paper). The intuition is that if an application
is I/O-intensive enough (having recognizable I/O bursts–see
details in Sec III-B) and “important” enough (running long
or frequently), we are confident enough to mark it as a can-
didate. Therefore, instead of setting an arbitrary quantitative
standard for an application, which should vary with system
configurations and load levels, here “being I/O-intensive” is
defined as “having recognizable and periodic I/O pattern”.
Note that most resource-intensive applications we have seen
running on supercomputer perform periodic I/O, so AID
focuses on characterizing such applications, while its I/O-
aware scheduling might help the minority applications having
very irregular I/O patterns as well.

With the short-listed candidates, the second phase will take
a much more thorough look by zooming in to the per-OST
traffic log, to discover their detailed I/O characteristics. This
process serves two-fold purposes to validate the candidates’
I/O intensity and for those validated, to collect I/O patterns rel-
evant to subsequent I/O-aware scheduling. More specifically,
AID collects (1) the application’s aggregate I/O volume per I/O
burst, (2) the I/O interval (average time between two adjacent
I/O-bursts) and (3) average I/O throughput.

In addition, assisted by the per-OST traffic analysis, AID
derives an applications’ OST footprint, the number of OSTs
it tends to use simultaneously. With n compute nodes, typical
I/O-intensive applications may use independent I/O to write n
files (n-to-n model), or collective I/O to write one (n-to-1) or
m (n-to-m) files [6], [9]. Finding the OST footprint also serves
two-fold purposes. First, it enables the I/O-aware scheduler
to estimate how many OSTs an application uses, and assess
the chance of two such applications stepping on each other’s
toes (though there is currently no way for the scheduler to
force an application to use a certain group of OSTs). Second,
pinpointing the subgroup of OSTs an application used allows
our I/O characterization process to refine the I/O patterns
collected, as I/O traffic from OSTs considered unused by this
application can now be excluded.

A. Initial I/O Intensity Classification

From jobs to applications: I/O characteristics belong to
applications, but are observed through jobs, each a particular
execution of an application. The number of unique applications
is typically much smaller than the number of jobs run per

year. Meanwhile, the same application run by different users
(domain scientists, system software experts, and software
engineers) or run with different number of nodes may exhibit
different I/O behavior. On the other hand, we observed that
it is quite rare for a single user to incur very different I/O
patterns running the same application using the same node
count (the number of compute nodes used by a job).

Therefore, for I/O characterization, we define a unique
application in the context of AID with the 3-tuple 〈user name,
job name, node count〉. Here “job name” is a user-assigned
string identifier included in the job script. This definition
allows us to obtain 9998 unique applications from the 5-month
log containing 181,969 jobs, resulting in 18.2 job runs per
application on average during this period.
Candidate selection: Now we need to examine the ag-
gregate I/O traffic log to nominate I/O-intensive application
candidates. This is done by processing the samples of each
application, obtained by intercepting the aggregate traffic log
using its jobs’ start/end times, in search for consistent and
significant I/O activities. The key property utilized by AID
is the periodicity of an application’s I/O behavior. E.g., Fig-
ure 4(a) plots an original sample of a real application, named
scaling, showing I/O bursts with clear periodical pattern.
As mentioned earlier, existing techniques from IOSI [18] are
adopted to identify individual I/O bursts from each sample.

Unlike IOSI, however, AID has to deal with the irregularity
and inconsistency involved in classifying unknown real appli-
cations whose job runs may possess variable I/O behavior,
aside from the noisy background from the aggregated I/O
traffic log. The bursts found in a sample could belong to
any of the concurrently running applications or even inter-
active user commands, and we have no knowledge to assume
any application to possess I/O dominance in these samples.
To solve this problem, we adopt a density-based clustering
technique, OPTICS [4], by transforming each identified I/O
burst for an application (all its samples combined) to a point
in a 2-D space, using the burst height (peak aggregate I/O
throughput) and area (total I/O volume) as x and y coordinate,
respectively. AID then performs clustering of these points,
aiming to identify groups of highly similar I/O bursts gener-
ated by potentially periodic I/O operations. We experimented
with multiple widely-used clustering algorithms, including K-
means [22] and DBSCAN [13], and finally selected OPTICS,
which is very robust with noisy data and does not make any
assumption on the number or shape of result clusters.

With 5 such samples of scaling, AID identifies a total of
1070 I/O bursts and mapped them to the aforementioned 2D
space (Figure 4(b)). Figure 4(c) further displays the “zoomed-
in” area with 4 result clusters identified by OPTICS.

AID then splits an original sample into n sub-samples, each
containing the I/O bursts from one of the n identified clusters.
To give an example, Figure 5 displays 4 sub-samples from
the original sample shown in Figure 4(a), plotted using colors
corresponding to the clustering result in Figure 4(c).

Its subsequent processing is based on the intuition that if a
group of I/O bursts belongs to the application in question, such

4

0 2 4 6 8

x 10
4

0

5

10

15

20

25

30

35

Time (s)

I/
O

 (
G

B
/s

)

(a) Sample of the scaling application

0.0 0.2 0.4 0.6 0.8 1.0
Normalized burst peak

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
li
ze

d
 b
u
rs
t
a
re
a

(b) Mapping scaling samples

0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Normalized burst peak

0.0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

N
o
rm

a
li
ze

d
 b
u
rs
t
a
re
a

1

2

3

4

(c) Clustering result of the samples

Fig. 4. Example of OPTICS clustering

I/O bursts need to (1) possess regular periodic pattern, and (2)
appear in a significant portion of the original samples. By ex-
amining aggregate statistics such as I/O interval (time distance
between adjacent I/O bursts), peak I/O throughput, and total
I/O volume per-burst, we avoid the “sample alignment” and
“full signature mining” tasks relying on strong assumptions
regarding the existence and consistency of application I/O pat-
tern. With attention instead focused on burst “size”, “height”,
and “frequency”, AID can handle variable execution lengths.
Similarly, by requiring only a fraction of samples possessing
common pattern (using a configurable threshold, set to 60%
in our evaluation), coupled with differentiating the same base
application’s jobs submitted by different users, AID can handle
inconsistent I/O patterns.

After such screening, among the I/O bursts in the 4 sub-
samples shown in Figure 5, only one (cluster 1) is identified
as a valid I/O pattern, as it is found to be regular, spanning a
significant portion of the job execution, and present across over
60% of sub-samples. Note that cluster 4 (Figure 5(d)), though
similarly regular looking, does not satisfy this standard and
is considered from other applications. The other clusters also
fail to meet these requirements. Finally, applications with such
identifiable I/O pattern (at least one verified I/O burst cluster)
are preliminarily considered an I/O-intensive candidate.

B. Candidate Application Validation

To reduce false positives, AID applies two validation tech-
niques to all candidates, as discussed below.
Scope checking This is to guard against the case where
there are long and frequent executions of a true I/O-intensive
application, whose samples entirely “cover” certain other ap-
plications’ shorter samples often enough. Those other applica-
tions will then have samples sharing the same I/O pattern. The
solution is rather intuitive: for each qualifying sample, we look
beyond its boundary, left and right, to check the correlation

between the I/O pattern’s existence and the application’s
execution. If a detected pattern is indeed incurred by a certain
application, it should not be consistently observed before/after
its job starts/completes running. Our AID prototype performs
this checking by empirically examining 5 times of the detected
I/O interval length, each way beyond the sample boundary.
Minimum support requirement Still, there could be rela-
tively rare cases where a candidate happens to piggy-back on
true I/O-intensive applications with similar job start and end
times. This is more likely to happen when the false positive
only has few samples. As mentioned earlier, AID is designed
to be a self-learning system, scheduled to run at least daily
to incrementally process new samples. Therefore, it maintains
a separate watch list for “under-probation” candidates, who
need to be validated with more samples. After bootstrapping
the knowledge base, all new applications need to go through
this probation period. Currently our AID prototype requires
5 minimum samples to have a candidate validated, which,
together with the aforementioned scope checking, significantly
reduces the chance of admitting a false positive.

C. Application OST Utilization Analysis

With I/O-intensive applications identified and validated,
AID performs another round of more detailed analysis. It
now has the total I/O volume per I/O burst, the peak/average
I/O throughput during I/O bursts, the I/O burst interval, and
the computation-to-I/O time ratio. These features describe the
temporal distribution of an application’s I/O traffic and can be
obtained by analyzing the aggregate server-side traffic log.

To understand an application’s I/O behavior from the spatial
aspect, AID mines its OST footprint, the number of OSTs it
accesses during an I/O burst, as the final feature of its I/O
pattern. Collecting and analyzing OST-level traffic logs is time
consuming, as each sample (called aggregate sample hereafter)
becomes 1008 OST samples, due to the lack of information
on which OSTs were mapped to a job. Fortunately, we have
dramatically reduced our scope of examination by identifying
I/O-intensive candidates from thousands of applications.
OST footprint identification Our log analysis finds real-
world applications consistent in OST footprint across I/O
bursts, across both read and write operations. Therefore, AID
assumes a constant OST footprint, κ, for each application.
Each individual burst in an aggregate sample then comprises of
κ OST bursts (0 < κ ≤ 1008). For example, if an application
writes collectively a single global shared file (n-to-1 model),
with a file stripe width of 16, κ = 16. If the average OST
throughput is 200 MB/s (with no other concurrent activi-
ties), the aggregated sample will contain I/O bursts with I/O
throughput of around 3.2 GB/s.

After preparing OST samples for each aggregated sample,
AID reuses the OPTICS clustering results described earlier.
These aggregate bursts have already been certified as “regular
and consistent” in the previous steps, hence giving strong hints
for the search of similar-shaped bursts on individual OSTs.
Suppose we have n aggregate samples from our target appli-
cation, each bearing m aggregated bursts. For each aggregate

5

0 2 4 6 8

x 10
4

0

5

10

15

20

25

30

Time (s)

W
ri

te
 (

G
B

/s
)

(a) Subsample of cluster 1

0 2 4 6 8

x 10
4

0

5

10

15

20

25

30

Time (s)

W
ri

te
 (

G
B

/s
)

(b) Subsample of cluster 2

0 2 4 6 8

x 10
4

0

5

10

15

20

25

30

Time (s)

W
ri

te
 (

G
B

/s
)

(c) Subsample of cluster 3

0 2 4 6 8

x 10
4

0

5

10

15

20

25

30

Time (s)

W
ri

te
 (

G
B

/s
)

(d) Subsample of cluster 4

Fig. 5. Restructured sample based on clustering result

burst Bi in the aggregate sample Sj , AID scans all 1008 per-
OST samples and counts oi,j corresponding single-OST bursts.
Then the application’s OST footprint κ is calculated as

κ = (

m∑
j=1

n∑
i=1

oi,j)/mn (1)

This way, κ gives an estimated average number of OSTs par-
ticipating in each I/O burst. We have evaluated such footprint
estimation with both real applications and pseudo-applications,
and found it to be effective (results in Section VI-B).
OST-footprint-enabled I/O pattern refinement Finally,
we perform another round of fine tuning, by taking into
account the AID-identified OST footprint. With this additional
piece of information, we can pinpoint the subset of OSTs
suspected to have participated in each I/O burst. This allows
us to exclude I/O traffic from other OSTs from the aggregate
sample, identified as background I/O noise from the target
application’s point of view. Though not affecting features such
as I/O interval, such refinement improves the accuracy of per-
burst I/O volume and average I/O throughput, as demonstrated
by our experimental results in Fig. 8.

V. I/O-AWARE JOB SCHEDULING

Based on the application I/O intensity classification and
I/O pattern characterization results, AID explores I/O-aware
scheduling. As discussed earlier, it is very hard to test-deploy
such proof-of-concept prototypes on large, production super-
computers. Simulation study, on the other hand, cannot reflect
the real dynamics of the mixed workload and shared resources
of such large-scale systems. AID hence starts with a best-
effort recommendation system, where it gives simple “run” or
“delay” recommendations based on its self-learned knowledge
and real-time system load information. We can then evaluate
the validity and potential impact of such recommendations, by
comparing what happens with dispatching the application run
anyway, according to or despite AID’s suggestion.

Another path is spatial partitioning, splitting OSTs across
applications when possible. This can potentially be applied
independently or jointly with the temporal staggering of jobs.
However, its deployment requires significant modification of
both the scheduler and the parallel file system, making it
even harder for us to verify. That said, the current AID
does consider the estimated per-application OST footprint in
making scheduling recommendations.

A. Summarizing I/O-Related Information

First, AID needs to establish a global view of I/O require-
ments of ongoing applications as well as the real-time storage
system status showing how busy individual OSTs are. More
specifically, it gathers information from two aspects:
Current application I/O requirement Using its application
knowledge base, AID can easily identify I/O-intensive appli-
cations running or waiting. It can further retrieve each candi-
date’s I/O characteristics, to estimate the resource requirement
for upcoming jobs, as well as to estimate the remaining
execution time of jobs already running. Note that despite the
effectiveness of its I/O workload auto-characterization, AID
is a best-effort system that does not possess sufficient ground
truth on its classification or I/O pattern mining results. Nor
can it guarantee that the future will repeat the history.
Real-time system I/O load level Meanwhile, AID con-
tinuously monitors the current I/O system load level by
maintaining an OST-level I/O load table (IOLT), updated by
querying the same server-side per-OST traffic log data, once
every 5 minutes in our prototype. The IOLT maintains a load
level histogram for each OST during the last four 5-minute
windows, in terms of its logged I/O throughput. In other words,
it keeps track of a 20-minute sliding window showing detailed
recent history of per-OST load level. AID divides the per-OST
throughput range [0, Tp] (Tp being the peak throughput) into
uniform throughput level bands (with width of 30MB/s in our
prototype). For each such band (e.g., [60MB/s, 90MB/s]) per
5-minute window, AID stores in IOLT the fraction of time that
each OST has load level within this interval, say 20%.

The real-time system load information allows AID to
supplement its knowledge base with actual run-time system
status, making it aware of both the “demand” and “supply”
sides of the shared I/O resources. Also, the real-time system
load data compensate AID’s lack of knowledge on newer
applications that do not have (sufficient) samples or interactive
user/administrator activities that bypass batch scheduling.

B. I/O-aware Scheduling

Finally, AID puts together everything it knows to make
I/O-aware scheduling recommendations: whether A should be
dispatched now (“run”) or later (“delay”). AID does this by
calculating a numeric OST load score (“score” for short), and
making job admission decisions considering A’s estimated
OST-footprint and I/O traffic. Below we describe the major
steps involved in this decision making process.

6

OST load score calculation This step takes the IOLT as
input and calculates for each OST the load score s:

s =

n∑
i=1

wi(fi + α) (2)

Here n is the total number of the aforementioned per-OST
throughput level bands and fi is the fraction of time this OST
stayed within the ith throughput band, based on the recent
history from the IOLT. This is to roughly measure the chance
and degree that A is expected to endure I/O contention with
its immediate dispatch, by examining both the frequency and
intensity of existing I/O activities, instead of simply relying
on the average/peak/minimum throughput. On top of fi, we
make an additional adjustment, α, leveraging the I/O patterns
mined by AID, for ongoing applications that has just started
or is about to complete (based on application job history and
the maximum execution time submitted to the scheduler and
available at real time to AID). Basically, we use their I/O
pattern in the knowledge base to add/subtract I/O throughput
intervals for newborn/dying jobs. Since we do not have the
mapping from application to a particular set of OSTs, we make
such adjustment at the top K idle/busy OSTs, where K is the
estimated OST footprint of the newborn/dying application.

However, with complex resource sharing behaviors and
without detailed ground truth, we cannot fully under-
stand/predict the impact the background load has on A’s
execution on the same OST. To this end, in Equation 2 we add
a weight, wi, to the corresponding band. The weight values
are in turn to be learned in a black-box style by real-system
I/O interference measurement, collected in a 2-month period
on Titan, during which we submitted small training jobs with
known I/O patterns, to measure their I/O performance behavior
under different OST load levels. More specifically, we simply
used the I/O time of a training job normalized to the measured
shortest time in all trials as s in Equation 2, making w the
only unknown. With a large number of training data points,
we solve the w values using an over-determined system [5].
Application-specific load threshold calculation Taking a
similar approach as in weight calculation above, AID also
observes the impact of overall OST load (in terms of average
s score over all OSTs used) on a target application by
measuring such correlation between system load and training
job’s I/O performance. Here it maintains a 2-D data structure,
partitioning the per-application I/O pattern into coarse intervals
using two parameter values: the average I/O throughput per-
burst, and the I/O-to-computation time ratio. Each “cell” in
this 2-D table saves training data points within the corre-
sponding parameter range, recording the measured average
OST load upon dispatch (again mined from history logs) and
normalized I/O performance. Therefore, given a known I/O-
intensive application A and its I/O pattern retrieved from the
AID knowledge base, plus a configurable performance impact
factor (e.g., a factor of 1.2 means that 20% longer I/O time
can be accepted), we can utilize the pre-computed correlation
and derive the threshold average OST load level L.

I/O-pattern-aware OST screening With the per-OST load
score s calculated based on recent load history, and the average
OST load level L calculated based on A’s known I/O pattern,
AID checks whether there are enough OSTs with projected
I/O load low enough to accommodate A now.

This is done by obtaining A’s OST footprint m from the
knowledge base, and examine the m OSTs with the lowest load
(by s value) in each file system partition. If the average load
of such “least busy” OSTs is under A’s application-dependent
load threshold L, then AID makes the “run” recommendation,
encouraging the immediate execution of A. Otherwise, it
makes the “delay” recommendation to hold A in the batch
queue until next (event-prompted) evaluation point.

VI. EXPERIMENTAL EVALUATION

We implemented a proof-of-concept prototype of AID, in
around 3200 lines of Python code. The tool itself has small
overhead. More specifically, it took no more than 9 hours to
bootstrap the knowledge-base using 6 months’ logs, around 3
minutes for its daily knowledge-base update using new logs,
and around 1 or 2 seconds for making an online scheduling
recommendation.

Our evaluation aims to verify several main hypotheses:
(1) AID can successfully identify I/O-intensive applications
without apriori information; (2) AID can identify I/O-intensive
applications’ OST footprint with reasonable accuracy; and (3)
I/O-aware job scheduling based on automatically derived per-
job I/O behavior can effectively reduce I/O contention.

Note that AID analyzes real application data, but we have
to rely on (unknown) users’ reply to our query to obtain some
“ground truth” for the majority of user jobs on Titan. There-
fore, we also generated our own pseudo-applications, again
with IOR (more details in Section VI-B). These applications
possess typical real I/O patterns observed on Spider, and have
been submitted repeatedly during several weeks.

A. I/O Intensity Classification
Name Value
Total number of logged jobs 181,969
Real applications without 3-tuple identification 460
Real applications with 3-tuple identification 9,998
Initial I/O-intensive candidates 95
Candidates passing scope checking 67
Candidates passing min support requirement 42
User-verified candidates 8

TABLE I
REAL APPLICATION CLASSIFICATION RESULTS

Our classification evaluation mainly focuses on checking
against false positives, as our “I/O-intensive” definition re-
quires “observable” I/O patterns and AID is rather confident
when an application cannot even make its watchlist.
Real applications We fed AID with the aforementioned 5-
month Titan I/O traffic and job logs. Table I summarizes major
statistics information regarding logged jobs.

AID obtained 95 preliminary I/O-intensive candidates, and
with its own validation using scope checking and minimum
support requirement it cut the shortlist to 42 candidates. We

7

ID Node Time(m) OST App. Domain
1 8192 1440 64 Geo-sciences
2 250 6-60 1008 Combustion
3 2048 30-185 1008 Astrophysics
4 1760 720 180 Combustion
5 1024 110-230 1008 Systems research
6 200 30-190 1008 Combustion
7 1008 13-17 1008 Computer Science
8 16388 43-310 800 Environmental

TABLE II
USER-VERIFIED I/O-INTENSIVE APPLICATIONS

hoped to verify the findings with feedback from the application
owners, however contacting Titan users has to comply with
center policy and is non-trivial. In the end, we obtained
approval to contact 16 candidates, mostly submitted by local
users. We contacted them by email and received responses
from 8, all confirming of the I/O-intensive classification.
Table II briefly describes these user-verified candidates.
Pseudo-applications First, Table III lists the characteristics of

ID # Nodes I/O interval # iter. Burst vol.
IORA 256 300s 6-8 1024GB
IORB 512 250s 6-10 2048GB
IORC 128 450s 4-6 1024GB
IORD 1024 600s 4-5 2048GB
IORE 128 100s 10-20 1024GB
IORF 128 80s 15-25 1024GB
IORG 256 600s 12-20 2048GB
IORH 64 500s 4-6 64GB

TABLE III
PSEUDO-APPLICATION CONFIGURATIONS

our own IOR pseudo-applications, whose trial runs (submitted
at diverse times of the day) consumed around 834,682 node-
hours on Titan. We specifically varied the number of itera-
tions (computation phase plus I/O phase), to evaluate AID’s
capability of handling variable-length executions of the same
application. Also, we configured IORH with smaller output
size per compute node and the n-to-1 model to generate rather
low I/O throughput. As expected, AID correctly identified all
7 I/O-intensive pseudo-applications and did not admit IORH

as a candidate. Moreover, all of our pseudo-applications are
run with the real jobs on Titan, making them among the 42
AID-identified I/O-intensive applications.

B. I/O Pattern Identification

Burst volume Interval Throughput # OST
AID 34TB 350s 150GB/s 960

Actual 32.4TB 380s 184GB/s 963

TABLE IV
APPLICATION 8, AID VS. GROUND TRUTH

Real applications We evaluate AID’s capability of mining
detailed I/O characteristics using the 8 verified real-world
applications. Table II confirms that I/O-intensive applications
are indeed run in diverse scales and lengths (producing large
ranges of node count and execution time distribution).

In addition to confirming I/O intensity, their users kindly
filled our email questionnaire on I/O behavior and settings.

Figure 6 shows the side-by-side comparison between AID-
extracted and user-supplied I/O patterns. We examine four key
features, namely per-burst I/O volume, I/O interval, average
I/O throughput during bursts, and OST footprint. We choose
not to normalize the results to show the actual scale and dis-
tribution of such pattern features in real applications. Results
for Application 8 are given separately in Table IV, due to its
exceptionally large I/O volume.

These results show that AID achieves high accuracy in au-
tomatically discovering application-specific I/O characteristics,
with errors likely due to noises. Actually, AID estimated I/O
volume can sometimes be smaller than the true application
volume, indicating that we might have excluded I/O traffic
from the target application. However, such accuracy suffices
for I/O-aware scheduling and workload study purposes.

One interesting side discovery here is that the majority of
observable I/O-intensive applications have rather large OST
footprint, as currently this is still the parallel I/O model
that delivers the highest aggregate throughput by avoiding
synchronization overhead (even when using the same number
of OSTs). More efficient n-to-m parallel I/O would allow
the applications to obtain high throughput while leaving the
system more flexibility in I/O-aware scheduling.
Pseudo-applications Unlike with real applications, we pos-
sess all ground truth on our IOR pseudo-applications. We
designed them to portray the diverse HPC I/O behavior,
with contrasting node counts, per-burst I/O volumes, and I/O
intervals. Most importantly, they adopt different common HPC
file access models (n-to-1, n-to-m, and n-to-n), resulting in
different OST footprints. To match the behavior observed in
real applications, we intentionally added variability in job
behavior (while maintaining the base I/O pattern), by changing
the number of computation-I/O iterations, hence producing
different sample lengths. In addition, we simulate the “I/O-off”
runs by randomly adding 1 - 5 job runs without I/O. The output
files use the default Spider setting: stripe count of 4 and stripe
size of 4MB. Figure 7 confirms that AID achieves similarly
good accuracy in deriving the application I/O patterns.

Fig 8 demonstrates the effect of I/O pattern refinement on
one of the IORB samples using the OST footprint results, as
described in Section IV-C. The left figure shows I/O bursts
before having OST footprint information and the right one
after. The I/O bursts after refinement are visibly more clarified
and less noisy. As marked on the top of the figures, the OST-
footprint knowledge (verified as quite accurate by previous
results) helps AID trim the total I/O volume of this application
from 53.4TB to 38.5TB within this particular sample, by
excluding I/O traffic from non-participating OSTs.

C. I/O-aware Job Scheduling

Finally, we evaluate the effectiveness of AID’s I/O-aware
scheduling recommendation. In this set of experiments, we
issued groups of pseudo-applications to create varying levels
of inter-job I/O contention as well as system I/O load. These
experiments were conducted on the Titan production system,
where we had no control on actual job concurrency. Titan

8

1 2 3 4 5 6 7
0

1

2

3

4

5

6

Applications

P
e
r−

b
u

rs
t

v
o

lu
m

e
 (

G
B

)

AID−extracted

User−supplied

(a) I/O volume per I/O burst

1 2 3 4 5 6 7
0

500

1000

1500

2000

Applications

I/
O

 i
n

te
rv

a
l
(s

)

AID−extracted

User−supplied

(b) I/O interval

1 2 3 4 5 6 7
0

50

100

150

Applications

A
v

g
.t

h
ro

u
g

h
p

u
t

d
u

ri
n

g
 b

u
rs

t
(G

B
/s

)

AID−extracted

User−supplied

(c) Average I/O throughput

1 2 3 4 5 6 7
0

200

400

600

800

1000

1200

Applications

O
S

T
 f

o
o

tp
ri

n
t

AID−extracted

User−supplied

(d) Number of OSTs

Fig. 6. Real Titan application I/O characterization accuracy

A B C D E F G
0

500

1000

1500

2000

2500

Test cases

P
e
r−

b
u

rs
t

v
o

lu
m

e
 (

G
B

)

AID−extracted
User−supplied

(a) Volume per I/O burst

A B C D E F G
0

100

200

300

400

500

600

Test cases

I/
O

 i
n

te
rv

a
l
(s

)

AID−extracted
User−supplied

(b) I/O interval

A B C D E F G
0

20

40

60

80

100

Test cases

A
v

g
.t

h
ro

u
g

h
p

u
t

d
u

ri
n

g
 b

u
rs

t
(G

B
/s

)

AID−extracted
User−supplied

(c) Average I/O throughput during burst

A B C D E F G
0

200

400

600

800

1000

1200

Test cases

O
S

T
 f

o
o

tp
ri

n
t

AID−extracted
User−supplied

(d) OST footprint

Fig. 7. IOR pseudo-application I/O characterization accuracy

0 500 1000 1500 2000 2500 3000
0

20

40

60

80

100

120

Time (s)

W
ri

te
 (

G
B

/s
)

total I/O volume: 53.4 TB

(a) Before OST analysis

0 500 1000 1500 2000 2500 3000
0

20

40

60

80

100

120

Time (s)

W
ri

te
 (

G
B

/s
)

total I/O volume: 38.5 TB

(b) After OST analysis

Fig. 8. I/O bursts before/after OST footprint analysis

job logs show that at any given time point during these tests,
33-68 jobs ran together with our ”target pseudo-application”,
of which 1-7 are our other pseudo applications. We analyze
ongoing applications’ I/O patterns and calculate the per-OST
load scores, as discussed in Section V, which leads to either
the “run” or “delay” recommendation right before the target
pseudo-application’s execution.

Note that we let the jobs run under the ”delay” recommen-
dation anyway, and check whether the ”delay” suggestion does
correlate with worse contention. To simulate the scenario with
real I/O-aware scheduling enabled, after the target application
starts we check and suspend other queued pseudo-applications,
to isolate the evaluation of individual scheduling decisions.

Here we used another set of IOR pseudo-applications (dif-
ferent from those in Table III), all using the n-to-m model,
to control the OST footprint size (256, 512, and 1008). The
acceptable performance impact factor is set to 1.5 (50%
slowdown). Figure 9 gives the results, with pairs of bars
showing the average per-job I/O time, plus variance in standard
deviation. The number above each bar indicates the number of
trials. We had to run many jobs to get at least 5 trials receiving
either recommendation, as we cannot control whether an

individual trial will receive a “run” or a “delay” order. As
expected, the runs started despite the “delay” recommendation
do spend considerably more time on I/O and often have larger
I/O time variances compared to those with the “run” blessing,
as seen in Figures 9(a) - 9(c).

Figure 9(d) plots the 2-D distribution of all trial data points,
in average OST score (x) and total I/O time normalized to the
shortest measurement (y). It clearly shows that the “run” data
points (blue dots) have better and more consistent performance
than the “delay” ones (orange squares). More specifically, the
“delay” data points have an I/O performance impact factor
(slowdown from the shortest I/O time measurement) of 1.69
on average and up to 2.93. The “run” data points, in contrast,
have 1.21 on average and up to 1.92.

Several of the “run” data points do get over the 1.5 impact
factor threshold and cause larger variances in the “run” bars
in Figures 9(a) - 9(c). After all, the experiments are done on
a large production system where we are not really scheduling
applications: though we can “hold” other pseudo-applications,
real I/O-intensive jobs do not go through AID’s approval
and may start after the pseudo-application’s launch. Therefore
we expect AID’s advantage to be more significant with fully
deployed I/O-aware schedulers.

VII. RELATED WORK

Resource-aware job scheduling I/O contention has been
recognized as an important problem for current and future
large-scale HPC platforms [7], [11], [14], [16], [20], [28],
[39]. Two studies have proposed platform-level, I/O-aware job
scheduling for reducing inter-job interference. Dorier et al.
proposed CALCioM [11], which dynamically selects appropri-
ate scheduling policies, coordinating applications’ I/O strategy
via inter-application communication. Applications on the same
compute platform are allowed to communicate and coordinate

9

256 512 1008
0

200

400

600

800

1000

1200

OST footprint

T
o

ta
l
I/
O

 t
im

e
 (

s
)

8

12

7
6

6

7

Run

Delay

(a) Total I/O time, IORX

256 512 1008
0

200

400

600

800

1000

1200

OST footprint

T
o

ta
l
I/
O

 t
im

e
 (

s
)

6

4

9

7

7

11

Run

Delay

(b) Total I/O time, IORY

256 512 1008
0

500

1000

1500

2000

2500

3000

3500

OST footprint

T
o

ta
l

I/
O

 t
im

e
 (

s
)

5

11

8
13

8

6

Run

Delay

(c) Total I/O time, IORZ

0 1 2 3 4 5 6

1

1.5

2

2.5

3

Average OST score (s)

N
o

rm
a

li
z
e

d
 j

o
b

 I
/O

 t
im

e

Run

Delay

(d) Normalized I/O time, IORX−Z

Fig. 9. Performance advantage of following scheduling recommendation

their I/O strategy with each other to avoid interference. Zhou et
al. [38] and Thapaliya et.al [31] proposed solutions coordinat-
ing/admitting I/O accesses to reduce I/O interference, but both
approaches require parallel file system modifications. Gainaru
et al. proposed a global scheduler [14], which prioritizes
I/O operations across applications based on applications’ past
behavior and system characteristics to reduce I/O congestion.
Compared to these systems, AID is much more lightweight,
and does not require inter-application communication or
system-level modification/overhead to schedule I/O operations.
In addition, the above existing global schedulers/coordinators
only moderate operations from already scheduled applications,
in contrast to AID’s proactive I/O-aware scheduling, especially
between applications with large OST footprints.

A few studies have proposed resource-aware job scheduling
to alleviate inter-job resource contention [28], [39], e.g., by
considering jobs’ communication patterns. Wang et al. [33],
developed a library, libPIO, that monitors resource usage
at the I/O routers, OSSes, OSTs, and the SION InfiniBand
Switches, and based on the load factor allocated OSTs to
specific I/O clients. Other systems have explored application-
level I/O aware scheduling. Li et al. [17] proposed ASCAR,
a storage traffic management framework for improving band-
width utilization and reducing performance variance. ASCAR
focuses on QoS management between co-running jobs, instead
of scheduling high-risk jobs. Novakovic et al. [25] presented
DeepDive, which transparently identifies and manages inter-
ference on cloud services. Lofstead et al. [20] proposed an
adaptive I/O approach that groups the processes of a running
application, and directs their output to particular storage tar-
gets, with inter-group coordination. Zhang et al. [37] proposed
IOrchestrator, which creates extra processes to execute I/O-
intensive application code and retrieve information on future
I/O requests for scheduling. These techniques are complemen-
tary to our approach. Meanwhile, AID’s global scheduling
aims to stagger the relatively small number of high-impact
I/O-intensive applications away from each other. It strives to
reduce the labor and performance cost of application-level I/O
scheduling, as well as the potential side-effect of uncoordi-
nated scheduling optimization by individual applications.

I/O characterization A number of I/O tracing tools
have been developed for general-purpose client-side instru-
mentation, profiling, and tracing of I/O activity, includ-
ing LANL-Trace [1], Darshan [10], HPCT-IO [30], RIOT

I/O [36], ScalaIOTrace [32], TRACE [23], Omnisc’IO [12],
and IPM [35]. However, existing tools suffer from multiple
well-known limitations, such as system overhead (including
generating additional I/O traffic), installation/linking require-
ments, and voluntary participation. Very recently, researchers
performed a comprehensive application I/O characteristics
study from several production supercomputer systems [21].
The authors successfully collected profiling data from a large
fraction of applications using Darshan and their results pro-
vided valuable support on application behavior for AID’s
design decisions. Meanwhile, AID utilizes existing server-side
monitoring and log data (collected with near-zero overhead),
and can provide additional application I/O characteristics data
to HPC storage/application developers with no user involve-
ment or application modification.

VIII. CONCLUSION

In this paper, we present AID, a mechanism that mines
application-specific I/O patterns from existing supercomputer
server-side I/O traffic logs and batch job history jobs, without
any additional tracing, profiling, or user-provided information.
We verified the effectiveness of AID using both user feedback
(on real-world HPC application unknown to us) and our own
pseudo-applications on a state-of-the-art supercomputer. We
further enabled AID to make I/O-aware scheduling recommen-
dations, and confirmed with experiments on the same super-
computer that such recommendations can produce significantly
lower I/O time and smaller I/O performance variance.

This work demonstrates that in large, complex, and highly
dynamic shared environments, where detailed tracing/profiling
is often intrusive and costly, we can still learn a lot about
unknown applications just by examining low-overhead, coarse-
granule system logs that have been routinely collected. The
key observation here is that resource-heavy applications tend
to have consistent behavior to be noticed, and the future, to a
large extent, does repeat history.

ACKNOWLEDGEMENT

We thank the reviewers for constructive comments that have
significantly improved the paper. This work was supported
in part by the Oak Ridge Leadership Computing Facility at
the Oak Ridge National Laboratory, which is managed by UT
Battelle, LLC for the U.S. DOE (under the contract No. DE-
AC05-00OR22725). This work was also supported in part by
the NSF grants CCF-1318564.

10

REFERENCES

[1] Los Alamos National Laboratory open-source LANL-Trace, http://
institute.lanl.gov/data/tdata.

[2] OLCF Policy Guide, https://www.olcf.ornl.gov/support/
system-user-guides/olcf-policy-guide/.

[3] Titan, http://www.olcf.ornl.gov/titan/.
[4] Mihael Ankerst, Markus M Breunig, Hans-Peter Kriegel, and Jörg

Sander. Optics: ordering points to identify the clustering structure. In
ACM Sigmod Record. ACM, 1999.

[5] I Barroda and FDK Roberts. Solution of an overdetermined system of
equations in the l1 norm [f4]. Communications of the ACM, 1974.

[6] John Bent, Garth Gibson, Gary Grider, Ben McClelland, Paul
Nowoczynski, James Nunez, Milo Polte, and Meghan Wingate. PLFS:
a checkpoint filesystem for parallel applications. In Proceedings of the
Conference on High Performance Computing Networking, Storage and
Analysis. ACM, 2009.

[7] Rupak Biswas, MJ Aftosmis, Cetin Kiris, and Bo-Wen Shen. Petascale
computing: Impact on future nasa missions. Petascale computing:
architectures and algorithms, 2007.

[8] Peter J Braam and Rumi Zahir. Lustre: A scalable, high performance
file system. Cluster File Systems, Inc, 2002.

[9] Philip Carns, Kevin Harms, William Allcock, Charles Bacon, Samuel
Lang, Robert Latham, and Robert Ross. Understanding and improving
computational science storage access through continuous characteriza-
tion. ACM Transactions on Storage (TOS), 2011.

[10] Philip H. Carns, Robert Latham, Robert B. Ross, Kamil Iskra, Samuel
Lang, and Katherine Riley. 24/7 Characterization of petascale I/O
workloads. In Proceedings of the First Workshop on Interfaces and
Abstractions for Scientific Data Storage (IASDS’09), 2009.

[11] Matthieu Dorier, Gabriel Antoniu, Robert Ross, Dries Kimpe, and
Shadi Ibrahim. CALCioM: Mitigating I/O interference in HPC systems
through cross-application coordination. In Parallel and Distributed
Processing Symposium, 2014.

[12] Matthieu Dorier, Shadi Ibrahim, Gabriel Antoniu, and Rob Ross. Om-
nisc’IO: a grammar-based approach to spatial and temporal i/o patterns
prediction. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE Press,
2014.

[13] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu.
A density-based algorithm for discovering clusters in large spatial
databases with noise. In Kdd, volume 96, pages 226–231, 1996.

[14] A. Gainaru, G. Aupy, A. Benoit, F. Cappello, Yves Robert, and M. Snir.
Scheduling the of HPC applications under congestion. In IPDPS, 2015.

[15] Yasuhiko Kanemasa, Qingyang Wang, Jack Li, Masazumi Matsubara,
and Calton Pu. Revisiting performance interference among consoli-
dated n-tier applications: Sharing is better than isolation. In Services
Computing (SCC), IEEE International Conference, 2013.

[16] Youngjae Kim, Scott Atchley, Geoffroy R Vallée, and Galen M Shipman.
LADS: Optimizing data transfers using layout-aware data scheduling.
In Proceedings of the 13th USENIX Conference on File and Storage
Technologies, 2015.

[17] Yan Li, Xiaoyuan Lu, Ethan L Miller, and Darrell DE Long. Ascar: Au-
tomating contention management for high-performance storage systems.
In Mass Storage Systems and Technologies (MSST’15), 2015.

[18] Yang Liu, Raghul Gunasekaran, Xiaosong Ma, and Sudharshan S
Vazhkudai. Automatic identification of application I/O signatures from
noisy server-side traces. In Proceedings of the 12th USENIX conference
on File and Storage Technologies, 2014.

[19] Jay Lofstead and Robert Ross. Insights for exascale IO APIs from
building a petascale IO API. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis. ACM, 2013.

[20] Jay Lofstead, Fang Zheng, Qing Liu, Scott Klasky, Ron Oldfield, Todd
Kordenbrock, Karsten Schwan, and Matthew Wolf. Managing variability
in the IO performance of petascale storage systems. In Proceedings of
the 2010 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE Computer Society,
2010.

[21] Huong Luu, Marianne Winslett, William Gropp, Robert Ross, Philip
Carns, Kevin Harms, Mr Prabhat, Suren Byna, and Yushu Yao. A
multiplatform study of I/O behavior on petascale supercomputers. In
Proceedings of the 24th International Symposium on High-Performance
Parallel and Distributed Computing, 2015.

[22] James MacQueen et al. Some methods for classification and analysis of
multivariate observations. In Proceedings of the fifth Berkeley symposium
on mathematical statistics and probability, 1967.

[23] Michael P Mesnier, Matthew Wachs, Raja R Simbasivan, Julio Lopez,
James Hendricks, Gregory R Ganger, and David R O’Hallaron. //trace:
Parallel trace replay with approximate causal events. In Proceedings
of the 5th USENIX Conference on File and Storage Technologies
(FAST’07), 2007.

[24] Ross Miller, Jason Hill, David A. Dillow, Raghul Gunasekaran, Shipman
Galen, and Don Maxwell. Monitoring tools for large scale systems. In
Proceedings of the Cray User Group (CUG’10), 2010.

[25] Dejan Novaković, Nedeljko Vasić, Stanko Novaković, Dejan Kostić, and
Ricardo Bianchini. Deepdive: Transparently identifying and managing
performance interference in virtualized environments. In Proceedings of
the 2013 USENIX Conference on Annual Technical Conference, 2013.

[26] Sarp Oral, David A Dillow, Douglas Fuller, Jason Hill, Dustin Leverman,
Sudharshan S Vazhkudai, Feiyi Wang, Youngjae Kim, James Rogers,
James Simmons, et al. OLCF’s 1 TB/s, next-generation lustre file
system. In Proceedings of Cray User Group Conference (CUG’13),
2013.

[27] Sarp Oral, James Simmons, Jason Hill, Dustin Leverman, Feiyi Wang,
Matt Ezell, Ross Miller, Douglas Fuller, Raghul Gunasekaran, Youngjae
Kim, et al. Best practices and lessons learned from deploying and
operating large-scale data-centric parallel file systems. In Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE Press, 2014.

[28] Jordà Polo, Claris Castillo, David Carrera, Yolanda Becerra, Ian Whal-
ley, Malgorzata Steinder, Jordi Torres, and Eduard Ayguadé. Resource-
aware adaptive scheduling for mapreduce clusters. In Middleware 2011,
pages 187–207. Springer, 2011.

[29] Xing Pu, Ling Liu, Yiduo Mei, Sankaran Sivathanu, Younggyun Koh,
Calton Pu, and Yuanda Cao. Who is your neighbor: Net I/O performance
interference in virtualized clouds. Services Computing, 2013.

[30] Seetharami Seelam, I-Hsin Chung, Ding-Yong Hong, Hui-Fang Wen,
and Hao Yu. Early experiences in application level I/O tracing on Blue
Gene systems. In Proceedings of the International Parallel Distributed
Processing Symposium (IPDPS’08), 2008.

[31] Sagar Thapaliya, Purushotham Bangalore, Jay Lofstead, Kathrn Mohror,
and Adam Moody. IO-cop: Managing concurrent accesses to shared
parallel file system. In Parallel Processing Workshops (ICCPW), 43rd
International Conference on. IEEE, 2014.

[32] Karthik Vijayakumar, Frank Mueller, Xiaosong Ma, and Philip C Roth.
Scalable I/O tracing and analysis. In Proceedings of the 4th Annual
Workshop on Petascale Data Storage. ACM, 2009.

[33] Feiyi Wang, Sarp Oral, Saurabh Gupta, Devesh Tiwari, and Sudharshan
Vazhkudai. Improving Large-Scale Storage System Performance via
Topology-aware and Balanced Data Placement. In The 20th IEEE
International Conference on Parallel and Distributed Systems (ICPADS),
2014.

[34] Feng Wang, Qin Xin, Bo Hong, Scott A. Brandt, Ethan L. Miller, Darrell
D. E. Long, and Tyce T. Mclarty. File system workload analysis for
large scale scientific computing applications. In Proceedings of the IEEE
21th Symposium on Mass Storage Systems and Technologies (MSST’04),
2004.

[35] Nicholas J Wright, Wayne Pfeiffer, and Allan Snavely. Characterizing
parallel scaling of scientific applications using ipm. In The 10th LCI
International Conference on High-Performance Clustered Computing,
2009.

[36] Steven A Wright, Simon D Hammond, Simon J Pennycook, Robert F
Bird, JA Herdman, Ian Miller, A Vadgama, Abhir Bhalerao, and
Stephen A Jarvis. Parallel file system analysis through application I/O
tracing. The Computer Journal, 56(2):141–155, 2013.

[37] Xuechen Zhang, Kei Davis, and Song Jiang. IOrchestrator: improving
the performance of multi-node I/O systems via inter-server coordination.
In Proceedings of the 2010 ACM/IEEE International Conference for
High Performance Computing, Networking, Storage and Analysis, 2010.

[38] Zhou Zhou, Xu Yang, Dongfang Zhao, Paul Rich, Wei Tang, Jia Wang,
and Zhiling Lan. I/O-aware batch scheduling for petascale computing
systems. In Cluster Computing (CLUSTER). IEEE, 2015.

[39] Hongbo Zou, Xian-He Sun, Siyuan Ma, and Xi Duan. A source-aware
interrupt scheduling for modern parallel I/O systems. In Parallel &
Distributed Processing Symposium (IPDPS’12), 2012.

11

